

Absolute Maximum Ratings（Note 1）		Recommended Operating Conditions（Note 2）
Supply Voltage（VCC）	-0.5 V to +7.0 V	
DC Input Diode Current（ $\mathrm{I}_{\mathbf{K}}$ ）		Supply Voltage（ V_{CC} ） 2.0 V to 3.6 V
$\mathrm{V}_{1}=-0.5 \mathrm{~V}$	－20 mA	Input Voltage（ V_{l} ） $\mathrm{V}^{\text {a }}$（ to 5.5 V
DC Input Voltage（ V_{I} ）	-0.5 V to 7 V	Output Voltage（ V_{O} ） $\mathrm{OV}^{\text {to }} \mathrm{V}_{\mathrm{CC}}$
DC Output Diode Current（lok）		Operating Temperature（ T_{A} ）$\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$	－20 mA	Input Rise and Fall Time（ $\Delta t / \Delta \mathrm{V}$ ） $0 \mathrm{~ns} / \mathrm{V}$ to $100 \mathrm{~ns} / \mathrm{V}$
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$+20 \mathrm{~mA}$	
DC Output Voltage（ V_{O} ）	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	Note 1：The＂Absolute Maximum Ratings＂are those values beyond which te satey of the device canno be gurared tha device shoud not be
DC Output Source		the saety of the device cannot be guaranteed．
or Sink Current（10）	$\pm 25 \mathrm{~mA}$	Characteristics tables are not guaranteed at the absolute maximum ratings． The＂Recommended Operating Conditions＂table will define the conditions
DC V_{CC} or Ground Current		tor actual device operation．
（Icc or $\mathrm{I}_{\text {gnd }}$ ）	$\pm 75 \mathrm{~mA}$	Note 2 ：Unused inputs must be held HIGH or Low．They may not float．
Storage Temperature（ $\mathrm{T}_{\text {STG }}$ ）	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Power Dissipation	180 mW	

DC Electrical Characteristics

Symbol	Parameter	v_{cc}	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
			Min	Typ	Max	Min	Max			
$\overline{\mathrm{V}_{\mathrm{H}}}$	HIGH Level Input Voltage	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \\ & 2.4 \end{aligned}$			$\begin{aligned} & \hline 1.5 \\ & 2.0 \\ & 2.4 \end{aligned}$		V		
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 3.6 \end{aligned}$			$\begin{aligned} & \hline 0.5 \\ & 0.8 \\ & 0.8 \end{aligned}$		$\begin{aligned} & \hline 0.5 \\ & 0.8 \\ & 0.8 \end{aligned}$	V		
V_{OH}	HIGH Level Output Voltage	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} \hline 1.9 \\ 2.9 \\ 2.58 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$		$\begin{gathered} 1.9 \\ 2.9 \\ 2.48 \end{gathered}$		V	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}}$	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-50 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	$\begin{gathered} \hline 0.1 \\ 0.1 \\ 0.36 \\ \hline \end{gathered}$		$\begin{gathered} 0.1 \\ 0.1 \\ 0.44 \end{gathered}$	V	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=50 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=50 \mu \mathrm{~A} \\ & \mathrm{IOL}=4 \mathrm{~mA} \\ & \hline \end{aligned}$
$\overline{l_{0 z}}$	3－STATE Output Off－State Current	3.6			± 0.25		± 2.5	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}} \text { or } \end{aligned}$	
I_{IN}	Input Leakage Current	3.6			± 0.1		± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{1 \mathrm{IN}}=5.5 \mathrm{~V}$ or GN	
ICC	Quiescent Supply Current	3.6			4.0		40.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GN	

Noise Characteristics（Note 3）

Symbol	Parameter		$\mathbf{V}_{\mathbf{C C}}$	$\mathbf{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathbf{C}$		Units

[^0]

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

[^0]: Note 3：（lnput $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{t}}=3 \mathrm{~ns}$ ）

